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Abstract. In this paper we complete our calculation of the NLO jet vertex which is part of the cross section
formulae for the production of Mueller Navelet jets at hadron hadron colliders and of forward jets in deep
inelastic electron proton scattering.

1 Introduction

In a recent paper [1], we have started the NLO calcula-
tion of the jet vertex which represents one of the build-
ing blocks in the production of Mueller-Navelet jets [2]
at hadron hadron colliders and of forward jets [3] in deep
inelastic electron proton scattering. Both jet production
processes are of particular interest for studying QCD in
the Regge limit or in the small-x limit: they provide kine-
matical environments for which the BFKL Pomeron [4]
applies. Previous experience shows that existing leading
order calculations [5–7] are not accurate enough to allow
for a reliable comparison with experimental data. NLO
calculations are available for the BFKL Pomeron [8,9],
but consistent next-to-leading order analysis of data at
the Tevatron, at LHC, or at HERA require the NLO cal-
culations also of the jet vertex and of the photon impact
factor. As to the jet vertex, in our previous paper [1] we
have presented the first part, namely the quark-initiated
jet vertex. In the present paper, we complete the NLO
analysis of the jet vertex with the gluon-initiated part.
The NLO calculation of the photon impact factor is being
pursued by two independent groups [10,11]. As a result
of these combined efforts, it will be possible to perform
consistent NLO studies of BFKL predictions in hadron
hadron colliders, in ep deep inelastic scattering, and in
e+e− scattering processes.

A particular theoretical challenge in computing the jet
vertex for the processes mentioned before is related to the
special kinematics. The processes to be analyzed is illus-
trated in Fig. 1: the lower gluon emitted from the hadron
H scatters with the upper parton q and produces the jet
J . Because of the large transverse momentum of the jet,

a Supported by the TMR Network “QCD and Deep Struc-
ture of Elementary Particles”

b Supported by the Alexander von Humboldt Stiftung

the gluon is hard and obeys the collinear factorization.
In particular, its scale dependence is described by the
DGLAP evolution equations [12]. Above the jet, on the
other hand, we require a large rapidity gap between the
jet and the outgoing parton q: this kinematic requirement
is described by BFKL dynamics. Consequently, the jet
vertex lies at the interface between DGLAP and BFKL
dynamics. As an essential result of our analysis we find
that it is possible to separate, inside the jet vertex, the
collinear infrared divergences that go into the parton evo-
lution of the incoming gluon from the high energy gluon
radiation inside the rapidity gap which belongs to the first
rung of the LO BFKL ladder. In [1] this was demonstrated
for the quark-initiated vertex, and in the present paper we
present the generalization to the gluon part.

Our paper will be organized as follows. In order to
make the reading as convenient as possible, we first re-
view the general framework, which will be the same as
in our previous paper [1]. Sections 3 and 4 then contain
the virtual and real corrections respectively, and in Sect. 5
we combine both results. Section 6 contains, as a consis-
tency check, a comparison of our jet vertex with the gluon
impact factor. In Sect. 7 we use our results to define the
general NLO jet production cross section. The concluding
section contains a short summary and an outlook of future
steps.

2 High energy factorization

2.1 General framework

We describe the kinematics of the hadron (H) quark (q)
collision in terms of light cone coordinates

pµ = (p+, p−, p) , p± :=
p0 ± p3

√
2

, (1)
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Fig. 1. Diagrammatic representation of the high energy pro-
cess studied in this paper. H is the incoming hadron providing
a gluon g with distribution density f ; q is the other incoming
particle which will be taken to be a quark; J denotes the jet
produced in the forward direction (w.r.t H) and i is the generic
label for outgoing particles

where the light-like vectors pH and pq form the basis of
the longitudinal plane:

pH =
(√

s

2
, 0,0

)
, s := (pH + pq)2 (2a)

pq =
(

0,

√
s

2
,0

)
(2b)

pi = Ei

(
eyi

√
2
,
e−yi

√
2

, φi

)
. (2c)

In the last equation we have introduced a parameteriza-
tion for the i-th particle in the final state in terms of the
rapidity yi (in the pH + pq center of mass frame), of the
transverse energy Ei = |pi| and of the azimuthal unit vec-
tor φi ‖ pi.

According to the parton model, we assume the physi-
cal cross section to be given by the corresponding partonic
cross section dσ̂ (computable in perturbation theory) con-
voluted with the parton distribution densities (PDF) fa of
the partons a inside the hadron H. A jet distribution SJ

selects the final states contributing to the one jet inclusive
cross section that we are considering.

In terms of the jet variables – rapidity, transverse en-
ergy and azimuthal angle – the one jet inclusive cross sec-
tion initiated by the gluons in hadron H can be written
as

dσ

dJ
:=

dσqH

dyJdEJdφJ
=

∫ 1

0
dx dσ̂qg(x) SJ(x)f (0)

g (x) . (3)

The incoming gluon carries a fraction x of the longitudinal
momentum of H, while its transverse motion is negligible
in the high energy regime:

pg = x pH =
(

x

√
s

2
, 0,0

)
. (4)

In our analysis we study the partonic subprocess g + q →
X + jet in the high energy limit

Λ2
QCD � E2

J ∼ −t (fixed) � s → ∞ (5)

k

q
2

1
g

Fig. 2. Leading diagram at lowest order for gluon-quark scat-
tering: the interaction occurs via gluon exchange in the t-
channel

2.2 The jet vertex at lowest order

In the high energy regime (5), the lowest order (LO) con-
tribution to the jet cross section is dominated by gluon
exchange in the t-channel, as shown in Fig. 2.

The corresponding expression in D = 4+2ε dimensions
has been already obtained in [1] and is given by

dσ

dJ

(0)
=

∫
dx

∫
dk h(0)

q (k)V (0)
g (k, x)f (0)

g (x) (6)

in terms of the LO jet vertex

V (0)
g (k, x) := h(0)

g (k)S(2)
J (k; x) , (7)

which is just the product of the LO gluon impact factor

h(0)
g (k) := N CA

k2 , N =
21+εαs

µ2εΓ (1 − ε)
√

N2
c − 1

, (8)

and of the jet distribution for two particles in the final
state

S(2)
J (k; x) := S

(2)
J (p1, p2; pg, pq)

= δ
(
1 − xJ

x

)
E1+2ε

J δ(k − kJ) ,

xJ :=
EJeyJ

√
s

. (9)

2.3 Ansatz for the factorization formula

According to the analysis of [1], we propose a high en-
ergy factorization formula for the description of the high
energy quark-hadron interaction with a jet in the final
state. In this formula a quark impact factor hq, the Green’s
function G for gluon exchange in the singlet channel, the
gluon-initiated jet vertex Vg and the gluon PDF fg are
convoluted in both transverse and longitudinal variables
to provide the jet differential cross section as follows:

dσ

dJ
=

∫
dx

∫
dk dk′ hq(k)G(xs,k, k′)Vg(k′, x)fg(x)

(10a)

G(xs,k, k′) := δ(k − k′) + αsK
(0)(k, k′) log

xs

s0
+ O(α2

s ) .

(10b)

The Green’s function contains by definition all the energy
dependence of the process and is given in terms of the
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BFKL kernel [4] K(k, k′). By writing the perturbative
expansions for the quark impact factor, the jet vertex,
and the PDF

h = h(0) + αsh
(1) + · · · (11a)

V = V (0) + αsV
(1) + · · · (11b)

f = f (0) + αsf
(1) + · · · , (11c)

our ansatz corresponds to the following structure for the
one-loop cross section:

dσ

dJ

(1)
= αs

∫
dx

∫
dk

{ ∫
dk′

[
h(0)

q (k)K(0)(k, k′)

× log
xs

s0
V (0)

g (k′, x)f (0)
g (x)

]
+ h(1)

q (k)V (0)
g (k, x)f (0)

g (x)

+ h(0)
q (k)V (0)

g (k, x)f (1)
g (x)

+ h(0)
q (k)V (1)

g (k, x)f (0)
g (x)

}
, (12)

which is obtained simply by expanding (10a) up to relative
order αs.

For the first order correction to the partonic impact
factor, h(1), which appears on the second line, we can use
the known expression of [13,14], and for the correction to
the PDF, f (1), we have the usual convolution with the LO
Altarelli-Parisi splitting functions:

αsf
(1)
a (x, µ2

F ) :=
αs

2π

1
ε

(
µ2

F

µ2

)ε ∑
b

∫ 1

x

dξ

ξ
Pab(ξ)f

(0)
b

(
x

ξ

)

=
αs

2π

1
ε

(
µ2

F

µ2

)ε ∑
b

Pab ⊗ f
(0)
b . (13)

Because of the definition (14) for αs = g2µ2ε[1 + ε(γE −
log 4π)]/4π, (13) defines the one-loop PDF in the MS
scheme. Finally, the correction term V

(1)
g is what we want

to compute in this paper.
Equations (10) and (11) constitute a highly non trivial

ansatz, which will be shown to depend upon a careful sep-
aration of singular and finite pieces. Our main task will
consist to identify the collinear singularities (13) to be ab-
sorbed in the parton densities, to check cancellation of the
remaining infrared singularities, and, finally, to separate
the terms proportional to log s which belong into the first
line of (12). The remaining finite (in ε) and constant (in s)
term will eventually be interpreted as one-loop correction
to the jet vertex, V

(1)
g .

3 Virtual corrections

For the one-loop analysis of the gluon-initiated jet pro-
duction process we adopt dimensional regularization in
D = 4 + 2ε dimensions and define, according to the MS
scheme, the bare dimensionless coupling αs as a function

of the dimensionful bare coupling g and of the renormal-
ization scale µ as follows:

αs = α(0)
s :=

g2µ2εΓ (1 − ε)
(4π)1+ε

(14)

The one-loop analysis of the virtual corrections can be
carried out in the same way of the quark-initiated case
presented in [1]. Discarding all terms suppressed by powers
of s, the one-loop quark-gluon cross section can be derived
from [15] and the ensuing virtual contribution to the jet
cross section reads

dσ

dJ

(virt)
= αs

∫
dx

∫
dk h(0)

q (k)

×
[
2ω(1)(k) log

xs

k2 + Π̃q(k) + Π̃g(k)
]

× V (0)
g (k, x)f (0)

g (x) , (15)

h
(0)
q (k) = h

(0)
g (k)CF /CA being the LO quark impact fac-

tor. The first term represents the leading log s (LL) contri-
bution to the virtual corrections. The coefficient of log s,
namely 2ω(1), constitutes the virtual part of the leading
BFKL kernel and is just twice the one-loop Regge-gluon
trajectory

ω(1)(k) = −CA

π

1
2ε

Γ 2(1 + ε)
Γ (1 + 2ε)

(
k2

µ2

)ε

. (16)

The ε-pole reflects the presence of a soft singularity which
will be compensated by an opposite one in the real part
of the kernel.

The non logarithmic terms in (15) represent the next-
to-leading log s (NLL) contribution to the virtual correc-
tions after the subtraction of the UV ε-pole occurring in
the renormalization of the coupling

αs(µ2) := α(0)
s

[
1 − α(0)

s
b0

ε

]
. (17)

They are expressed in terms of the full virtual corrections
to the impact factors [15] Πa : a = q, g, and are denoted
by Π̃a := Πa − (−b0/ε). The explicit expressions for the
quark impact factor correction were given in (40,45) of [1];
the virtual correction to the gluon impact factor is

Π̃g(k) =
[(

− 1
ε2 +

11
6ε

+
5π2

12
− 67

36

)
CA

π

+
(

− 1
3ε

+
5
18

)
Nf

π
− b0 log

k2

µ2

] (
k2

µ2

)ε

, (18)

where b0 = (11CA −2Nf )/12π is the first coefficient of the
β-function. Any occurrence of αs in (15) and in all other
coming formulae is to be understood as αs(µ2).

The gluon impact factor virtual correction (18) shows
double and single poles in ε. These poles are of IR origin
and are due to both soft and collinear singularities. Partly
they will cancel against the corresponding singularities of
the real emission corrections, leaving a simple pole that
will be absorbed in the redefinition of the PDFs. This will
be shown in Sect. 5.
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Fig. 3. Labelling the two-to-three parton scattering process.
The two dashed lines denote a qq̄ pair or a gluon pair. Note
the definition of the transferred momenta k and k′

4 Real corrections

The real emission corrections of the quark-gluon collision
that we are considering, involves three partons in the fi-
nal states: an outgoing quark (labelled by “2”) – which
is nothing but the scattered incoming quark q – and two
additional partons (“1” and “3”), which can be either a
qq̄ pair or two gluons (see Fig. 3).

We parametrize the kinematics of the process in terms
of Sudakov variables of two exchanged momenta:

k := pq − p2 = −w̄pg + wpq + k⊥ , k⊥ = (0, 0, k)
(19a)

k′ := p1 − pg = −zpg + z̄pq + k′
⊥ , k′

⊥ = (0, 0, k′) .
(19b)

Note that the transverse energies introduced in (2c) cor-
respond to E1 = |k′|, E2 = |k|, E3 = |k − k′|.

The partonic differential cross sections has been com-
puted [13,14] for both cases in the high energy regime,
where terms suppressed by powers of s are neglected. In-
troducing the rapidity y′ = y + 1

2 log 1
x “measured” in

the partonic center of mass frame, we can split the phase
space into two parts defined by y′

1, y
′
3 > 0 (lower half) and

y′
3 < 0 < y′

1 (upper half)1.
The form of the partonic differential cross section turns

out to be quite simple when restricted to one of the two
halves of the phase space. For the “lower half region”
y′
1, y

′
3 > 0, which corresponds to z > zcut : = E3√

xs
, the

cross section can be cast into the general form

dσ̂qg→fin = h(0)
q (k)Ffin(k, k′, z)h(0)

g (k′) dk dk′ dz ,

(z > zcut) , (20)

where the function F depends on the particular final state.
For quark-gluon scattering, we have two contributions.
The qqq̄ final state term is given by

Fqqq̄(k, k′, z) =
αs

2π
NfTR

Pqg(z, ε)
πε

1
q2 (21)

×
[
CF

CA
+ z(1 − z)

q · k′

(q − zk)2

]
,

Pqg(z, ε) = 1 − 2z(1 − z)
1 + ε

, (22)

πε = π1+εΓ (1 − ε)µ2ε ,

1 By momentum conservation there is always a particle with
y′ > 0, which can be labelled by “1” without loss of generality

where q = k − k′, TR = 1/2 and Pgq(z, ε) is – apart from
a missing TR factor – the real part of the g → q splitting
function in 4 + 2ε dimensions.

The qgg contribution can be written as

Fqgg(k, k′, z) =
αs

2π
CA

Pgg(z)
πε

(23)

× z2k′2 + (1 − z)2q2 − z(1 − z)q · k′

q2(q − zk)2
,

Pgg(z) =
1 + z4 + (1 − z)4

2z(1 − z)
, (24)

where Pgg(z) is – apart from the missing colour factor
2CA – the real part of the g → g splitting function (in any
dimension).

The real correction to the upper quark impact factor
receives contribution only from the qgg final state in the
“upper half region” of the phase space and from the virtual
correction contribution of (15) coming from the q impact
factor correction Π̃q. It can be computed in a similar way
as presented in [1] and it will not be discussed further here.
We simply report the final result adapted to the case of
incoming gluon:

dσ

dJ

(y′
3<0)

qgg +
dσ

dJ

(virt)
∣∣∣∣
Π̃q

= αs

∫
dx

∫
dk dk′ h(0)

q (k)K(0,real)(k, k′)

× log
√

xs

max(E2, E3)
V (0)

g (k′, x)f (0)
g (x)

+ αs

∫
dx

∫
dk h(1)

q (k)V (0)
g (k, x)f (0)

g (x) , (25)

The structure of the infrared (IR) singularities for the
gluon-initiated vertex, is somewhat more entangled than
that of the quark-initiated one. This happens in particu-
lar when the gluon pair is emitted in the final state. Since
gluons are indistinguishable, each of the gluons can con-
tribute to the LL term, and the LL subtraction needed
to extract the jet vertex cannot be defined on the same
footing as in the quark case [1].

In the next sections we develop an explicit procedure
for separating the LL contribution from the collinear sin-
gular terms. We check the cancellation of the soft singular-
ities and isolate the finite expression for the gluon-initiated
jet vertex.

4.1 Jet definition

We begin with a brief review of the jet definition. Follow-
ing the arguments given in [16], we require that the jet
distribution S

(n)
J , selecting from a generic n-particle final

state the configurations contributing to our one jet inclu-
sive observable, be IR safe. This corresponds to the fact
that emission of a soft particle cannot be distinguished
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g
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Fig. 4. Feynman diagrams contribut-
ing to quark-gluon scattering in which
the gluon fragments in a qq̄ pair

from the analogous state without soft emission. Further-
more, collinear emissions of partons cannot be distingui-
shed from the corresponding state where the collinear par-
tons are replaced by a single parton carrying the sum of
their quantum numbers.

Listing the possible IR singular configurations, only
the emission of a gluon (1 or 3) with vanishing momen-
tum gives rise to soft singularities. Collinear singularities
arise in collinear emissions of partons that couple directly
to each other. The list of all possible collinear singular
configurations, in an obvious notation, reads as follows:

g ‖ 1 , g ‖ 3 , 1 ‖ 3 , (26a)
q ‖ 1 , q ‖ 2 , q ‖ 3 , 2 ‖ 3 . (26b)

It is important to note that, in the kinematic regime we
are considering, configurations in which quark 2 is emitted
outside the fragmentation region of quark q are strongly
suppressed, i.e., quark 2 never belongs to the jet produced
in the forward direction of gluon g. This is because the
propagator of the exchanged particle provides a suppres-
sion factor ∼ t/s with respect to the situation where quark
2 is in the fragmentation region of quark q. Therefore,
we can safely neglect the configurations in which quark 2
enters the jet, and only particles 1 and 3 play a role in
building up the jet.

In terms of the variables p1, p3, p
+
3 , p+

g , the 3-particle
jet distribution

S(3)
J

(
p1, p3,

p+
3

p+
H

;
p+

g

p+
H

)
≡ S(3)

J (k′, k − k′, xz; x)

:= S
(3)
J (p1, p2, p3; pg, pq) . (27)

must satisfy the following properties in order to be IR safe
(cfr. [1]):

1 soft : S(3)
J (0, p, x; x) = S(2)

J (p; x) (28a)

3 soft : S(3)
J (p,0, 0; x) = S(2)

J (p; x) (28b)

1 ‖ 3 : S(3)
J ((1 − λ)p, λp, λx; x) = S(2)

J (p; x) (28c)

g ‖ 1 : S(3)
J (0, p, ξ; x) = S(2)

J (p; ξ) (28d)

g ‖ 3 : S(3)
J (p,0, ξ; x) = S(2)

J (p; x − ξ) .
(28e)

Note that, since quark 2 does not participate in the jet,
the collinear properties of the jet distribution are applied
only to the configurations listed in (26a).

In the following sections these relations will be used
when extracting the divergences of the real emission.

4.2 qq̄ pair in the final state

We have already observed in the previous section that
there are two kind of final states, differing in the type
of the partons denoted by 1 and 3: either a qq̄ pair or a
gluon pair. Here we consider the contribution of the final
state with qq̄ pair. In this case, the main contribution
occurs when the qq̄ pair is emitted with a small invariant
mass in the fragmentation region of the incoming gluon. In
practice, we need only to consider the “lower half” phase
space y′

3 < 0 contribution. The corresponding Feynman
diagrams are shown in Fig. 4.

The starting formula is derived from (3), using (27)
for the jet distribution and (20) and (21) for the partonic
cross section:

dσ

dJ
qqq̄ =

αs

2π
N

∫
dk dk′ h(0)

q (k)

×
∫ 1

zcut

dz NfTR
Pqg(z, ε)

πε

1
k′2q2

×
[
CF + CA

z(1 − z)q · k′

(q − zk)2

]
×

∫
dx S(3)

J

(
k′, q, xz; x

)
f (0)
g (x) . (29)

Since the integrand in the RHS of (29) is regular in the
z → 0 limit, we can replace the lower limit of integration
in z: zcut → 0. This amounts to a negligible error in the
high energy limit of order t/s.

CF term

Let us first consider the CF piece. In this term the two
IR singularities of collinear origin (3 ‖ g ⇐⇒ q = 0
or 1 ‖ g ⇐⇒ k′ = 0) can be disentangled employing a
simple fract decomposition:

1
q2k′2 =

1
q2 + k′2

[
1
q2 +

1
k′2

]
, (30)

and we can write

dσ

dJ
CF =

dσ

dJ

(1)
CF +

dσ

dJ

(3)
CF (31)

dσ

dJ

(1)
CF =

∫
dk h(0)

q (k)
∫

dk′

πεk
′2 I(k′; k)

dσ

dJ

(3)
CF =

∫
dk h(0)

q (k)
∫

dk′

πε(k − k′)2
I(k′; k)
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where the integrand I is given by

I(k′; k) := N CF TRNf

2π

1
k′2 + (k − k′)2

∫ 1

0
dz Pqg(z, ε)

×
∫

dx S(3)
J

(
k′, k − k′, xz; x

)
f (0)
g (x) . (32)

Because of the symmetry of Pqg and S(3)
J under the q ↔ q̄

exchange, i.e., {z ↔ 1−z, k′ ↔ k−k′}, it holds I(k′; k) =
I(k − k′; k) and thus the two terms in (31) are equal.

The separation of the collinear singularity is performed
by means of the subtraction method by decomposing

dσ

dJ
CF :=

dσ

dJ

coll
CF +

dσ

dJ

finite
CF , (33)

where the collinear singular term depends on an UV cut-
off Λ and is defined by

dσ

dJ

coll
CF := 2

∫
dk h(0)

q (k)
∫

dk′

πεk
′2 I(0; k)Θ(Λ2 − k′2) .

(34)
In the collinear limit k′ → 0, the jet distribution re-

duces to S(3)
J → S(2)

J (k; x) (cfr. (28d,e)). Introducing the
gluon-to-quark splitting function Pqg(z) = TR[z2+(1−z)2]
one can write

dσ

dJ

coll
CF =

αs

π
Nf

∫
dk h(0)

q (k)
∫

dx

×
[1
ε

(
Λ2

µ2

)ε ∫ 1

0
dz Pqg(z)V (0)

q (k, xz)f (0)
g (x)

+
∫ 1

0
dz z(1 − z)V (0)

q (k, xz)f (0)
g (x)

]
. (35)

The finite contribution of the CF term can be computed
at ε = 0 and reads

dσ

dJ

finite
CF =

αs

π
Nf

∫
dk h(0)

q (k)
∫

dk′

π

∫
dx

∫ 1

0
dz Pqg(z)

×
[
h(0)

q (k′)
1

q2 + k′2 S(3)
J

(
k′, q, xz; x

)
− 1

k′2 Θ(Λ2 − k′2)V (0)
q (k, xz)

]
f (0)
g (x). (36)

CA term

In the CA term there is only one final state collinear sin-
gularity when 3 ‖ 1, corresponding to q − zk = 0. Also in
this case we separate the collinear singularity

dσ

dJ
CA :=

dσ

dJ

coll
CA +

dσ

dJ

finite
CA (37)

by means of the subtraction method: we define the colli-
near singular term as the residue of the 1/(q − zk)2 pole,
integrated in a circle of radius Λ centered in the singular-
ity. For simplicity we use the same cut-off Λ introduced
in the CF term. In this case, the jet distribution can be

simplified thanks to (28c): S(3)
J → S(2)

J (k; x) and the z
integration can straightforwardly be performed, yielding

dσ

dJ

coll
CA = αs

∫
dk h(0)

q (k)
∫

dx V (0)
g (k, x)f (0)

g (x)

× Nf

π

(
Λ2

µ2

)ε (
1
6ε

+
1
12

)
(38)

and

dσ

dJ

finite
CA =

αs

2π
Nf

∫
dk h(0)

q (k)
∫

dx f (0)
g (x)

×
∫ 1

0
dz Pqg(z)

∫
dk′

π

NCA

(q − zk)2

×
[
z(1 − z)

q · k′

q2k′2 S(3)
J

(
k′, q, xz; x

)
− 1

k2 Θ
(
Λ2 − (q − zk)2

)S(2)
J (k; x)

]
(39)

4.3 Real corrections to the jet vertex
from qgg final state

The starting formula can be derived from (3), using (27)
for the jet distribution and (20) and (23) for the partonic
cross section. A more convenient expression can be written
if one notes that the splitting function for gluons can be
decomposed as

Pgg(z) = P (z) + P (1 − z), P (z) =
(

1
z

+
z

2

)
(1 − z).

(40)
Using the symmetry of the partonic cross section and of
the jet distribution under the exchange of the two gluons:
{z ↔ 1 − z, k′ ↔ k − k′}, the jet cross section can be
rewritten as

dσ

dJ

(y′
3>0)

qgg =
αs

π

∫
dk h(0)

q (k′)
∫

dk′

πε
h(0)

g (k)
∫ 1

zcut

dz P (z)

× z2k′2 + (1 − z)q · (q − zk)
q2(q − zk)2

×
∫

dx S(3)
J

(
k′, q, xz; x

)
f (0)
g (x) . (41)

It is important to observe that now the “splitting func-
tion” P has a pole only at z = 0, while it is regular (ac-
tually vanishes) at z = 1. The reason is that now we are
employing an asymmetric treatment which causes gluon 3
to be the only responsible of soft singularities and of the
central region LL contribution.

The expression (41) looks now pretty similar to the
real contribution of the quark-initiated case. We can there-
fore proceed in an analogous way for its computation and
consider separately the two terms in (41). We define the
A and B term as the first (∝ z2k′2) and the second
(∝ (1 − z)q · (q − zk)) terms of (41) respectively.
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4.3.1 A term

The A term2 numerator, has no g ‖ 1 collinear singular-
ity. In addition, the z2 factor in the numerator causes a
suppression of the integrand in the central region, and we
can shift the lower limit of integration zcut in z down to
zero:

dσ

dJ
A = αs

CA

π

∫
dk h(0)

q (k)
∫

dx f (0)
g (x)

∫ 1

0
dz z2P (z)

×
∫

dk′

πε

NCA

q2(q − zk)2
S(3)

J (k′, q, xz; x) . (42)

We perform the rescaling q =: zl and use l as integration
variable by substituting k′ = k − zl, so that q − zk =
z(l−k). Next we perform a simple fraction decomposition
in order to separate the initial (i) state (g ‖ 3 ⇐⇒ l = 0)
and final (f) state (1 ‖ 3 ⇐⇒ l − k = 0) collinear
singularities:

1
l2(l − k)2

=
1

l2 + (l − k)2

[
1
l2

+
1

(l − k)2

]
. (43)

Beginning with the final state (f) collinear singular-
ity, in terms of the new variables the A contribution to
the jet cross section can be rewritten in the form

dσ

dJ

f
A := αs

∫ 1

0

dz

z1−2ε

∫
dl

πε(l − k)2
I(z, l)

=
dσ

dJ

f,soft
A +

dσ

dJ

f,coll
A +

dσ

dJ

f,finite
A , (44)

which is particularly suitable for the analytic extraction
of the divergences: the RHS contains three pieces, 1) the
soft divergence, 2) the collinear divergence, and 3) a finite
part. The integrand introduced in (44) is defined by

I(z, l) :=
CA

π
zP (z)

∫
dk h(0)

q (k)
NCA

l2 + (l − k)2

×
∫

dxS(3)
J (k − zl, zl, xz; x)f (0)

g (x) . (45)

The soft term in (44) is defined by evaluating the inte-
grand in the soft limit z → 0. In this limit, the jet distri-
bution can be simplified by means of (28b), and leads to
the constraint k2 = E2

J . One obtains

dσ

dJ

f,soft
A := αs

∫ 1

0

dz

z1−2ε

∫
dl

πε(l − k)2
I(0, l)

= αs
CA

π

∫
dk h(0)

q (k)
∫ 1

0

dz

z1−2ε

∫
dl

πε(l − k)2

× NCA

l2 + (l − k)2

∫
dx S(2)

J (k; x)f (0)
g (x)

2 This term has the same structure of the CF term analyzed
in [1], and can be simply recovered from the latter by replacing
C2

F Pgq → C2
AP . The analysis that we perform here closely

follows the one made in that paper

= αs
CA

π

[
1

2ε2 − π2

12

] (
E2

J

µ2

)ε

×
∫

dk

∫
dx h(0)

q (k)V (0)
g (k, x)f (0)

g (x) , (46)

where as usual, in the final result, we have collected some
factors in such a way that they reproduce the LO jet vertex
(7). The divergent factor exhibits single as well as double
poles, because our definition of the soft part includes also
the region where collinear and soft singularities merge.

The pure collinear singularity can be isolated by eval-
uating the integrand (45) in the collinear limit l = k, after
having subtracted the soft term (l = k, z = 0). The result-
ing expression is clearly regular in the soft limit (z → 0)
and therefore contains a simple collinear pole. An UV cut-
off Λ is introduced since the residue at the collinear limit
is no more integrable in the UV region. Thanks to (28c)
the jet distribution simplifies to S(2)

J :

dσ

dJ

f,coll
A := αs

∫ 1

0

dz

z1−2ε

∫
dl

πε(l − k)2

× [I(z, k) − I(0, k)] Θ(Λ2 − (l − k)2)

= αs
CA

π

∫
dk h(0)

q (k)
NCA

k2

∫ 1

0

dz

z1−2ε

× [zP (z) − 1]
∫

dl

πε(l − k)2
Θ(Λ2 − (l − k)2)

×
∫

dx S(2)
J (k; x)f (0)

g (x)

= αs
CA

π

[
− 11

12ε

(
Λ2

µ2

)ε

+
67
36

]
×

∫
dx

∫
dk h(0)

q (k)V (0)
g (k, x)f (0)

g (x) . (47)

The remaining part is regular in the ε → 0 limit and
defines the finite term:

dσ

dJ

f,finite
A := αs

∫ 1

0

dz

z

∫
dl

π(l − k)2
[
I(z, l) − I(0, l)

− (
I(z, k) − I(0, k)

)
Θ(Λ2 − (l − k)2)

]
= αs

CA

π

∫
dk h(0)

q (k)
∫ 1

0

dz

(1 − z)+

× [(1 − z)P (1 − z)]
∫

dx f (0)
g (x)

×
∫

dl

πl2

[ NCA

l2 + (l − k)2

× S(3)
J (l + z(k − l), (1 − z)(k − l), x(1 − z); x)

− V (0)
g (k, x)Θ(Λ2 − l2)

]
(48)

In the last equation we have performed the change of vari-
able z → 1 − z in order to simplify the expression with
the introduction of the ()+ regularization for regularizing
the 1/(1 − z) distribution at z = 1.

Next we consider the term with the initial state (i)
collinear singularity. We can write, in the same way as
before,
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dσ

dJ

i
A := αs

∫ 1

0

dz

z1−2ε

∫
dl

πεl
2 I(z, l)

=
dσ

dJ

i,soft
A +

dσ

dJ

i,coll
A +

dσ

dJ

i,finite
A , (49)

where I is given by (45). It is trivial to see that the soft
contribution, defined by evaluating the integrand I in (49)
at z = 0, is equal to the corresponding (f) term (46):

dσ

dJ

i,soft
A =

dσ

dJ

f,soft
A . (50)

As to the collinear piece, we note that in the collinear limit
l = 0 the jet distribution reduces (by applying (28e)) to
S(2)

J , and one gets, using always the same UV cutoff Λ,
performing the l integration and changing the integration
variable z → 1 − z,

dσ

dJ

i,coll
A := αs

∫ 1

0

dz

z1−2ε

∫
dl

πεl
2

× [I(z,0) − I(0,0)] Θ(Λ2 − l2)

= αs
CA

π

∫
dk h(0)

q (k)
∫

dx f (0)
g (x)

×
{

1
ε

(
Λ2

µ2

)ε ∫ 1

0

dz

(1 − z)+
(1 − z)P (1 − z)

× V (0)
g (k, xz) + 2

∫ 1

0
dz

[
ln(1 − z)
(1 − z)

]
+

× (1 − z)P (1 − z)V (0)
g (k, xz)

}
. (51)

The left contribution is regular in 4 dimensions and
defines another finite term

dσ

dJ

i,finite
A := αs

∫ 1

0

dz

z

∫
dl

πl2
[
I(z, l) − I(0, l)

− (
I(z,0) − I(0,0)

)
Θ(Λ2 − l2)

]
= αs

CA

π

∫
dk h(0)

q (k)
∫ 1

0

dz

(1 − z)+

× [(1 − z)P (1 − z)]
∫

dx f (0)
g (x)

×
∫

dl

πl2

[ NCA

l2 + (l − k)2

× S(3)
J (k − (1 − z)l, (1 − z)l, x(1 − z); x)

− V (0)
g (k, xz)Θ(Λ2 − l2)

]
. (52)

4.3.2 B term

The last piece to be analyzed is the B term, which reads

dσ

dJ
B = αs

CA

π

∫
dk h(0)

q (k)
∫

dx f (0)
g (x)

×
∫ 1

zcut

dz (1 − z)P (z)
∫

dk′

πεk
′2

× q · (q − zk)
q2(q − zk)2

S(3)
J (k′, q, xz; x)

=
dσ

dJ

coll
B +

dσ

dJ

LL
B +

dσ

dJ

const
B , (53)

and will be decomposed in a collinear divergent piece, an
energy dependent piece which is just the LL contribution
to the cross section coming from gluon emission in the
central region, plus a finite and constant in energy term
as shown in the last line of the above equation. It can be
noticed immediately the presence of a g ‖ 1 collinear sin-
gularity corresponding to the k′ = 0 pole. As already com-
mented for the similar case [1] there are no other singular-
ities in the k′-integration (neither q = 0 nor q − zk = 0)
except for z → 0 corresponding to gluon 3 being in the
central region, which gives the LL contribution. Here we
expect a soft singularity needed to cancel the one in the
gluon trajectory (16).

We recall that the jet distribution functions become
essential in disentangling the collinear singularities, the
soft singularities, and the leading log s pieces.

The basic mechanism are the same as for the quark
case (remember here that gluon 3 is playing a special role
because of the manipulation in the integrand performed
at the beginning of Sect. 4.3):

– When the outgoing gluon 1 is in the collinear region of
the incoming gluon g, i.e., y1 → ∞, it cannot enter the
jet; only gluon 3 can thus be the jet, y3 is fixed and
no logarithm of the energy can arise due to the lack
of evolution in the gluon rapidity. No other singular
configuration is found when J = {3}.

– In the composite jet configuration, i.e., J = {1, 3}, the
gluon rapidity is bounded within a small range of val-
ues, and also in this case no log s can arise. There could
be a singularity for vanishing gluon 3 momentum: even
if the 1 ‖ 3 collinear singularity is absent, we have seen
that, at very low z, a soft singular integrand arises.
However, the divergence is prevented by the jet cone
boundary, which causes a shrinkage of the domain of
integration ∼ z2 for z → 0 and thus compensates the
growth of the integrand.

– The jet configuration J = {1} allows gluon 3 to span
the whole phase space, apart, of course, from the jet
region itself. The LL term arises from gluon configu-
rations in the central region. Therefore, it is crucial to
understand to what extent the differential cross sec-
tion provides a leading contribution. It turns out that
the coherence of QCD radiation suppresses the emis-
sion probability for gluon 3 rapidity y3 being larger
than the rapidity y1 of the gluon 1, namely an angular
ordering prescription holds. This will provide the final
form of the leading term, i.e., the appropriate scale of
the energy and, as a consequence, a finite and definite
expression for the one-loop jet vertex correction.

Let us isolate in (53) the initial state g ‖ 1 collinear
singular contribution and define, as usual, the collinear
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Table 1. Schematics of the decomposition of real and virtual one-loop corrections to gq scattering and references of the
corresponding equations

virtual real qgg real qqq̄

ω(1) Π̃g Π̃q y′
3 < 0 y′

3 > 0

︸ ︷︷ ︸ A B CF CA

↙ ↘ f i

LL
soft
coll LL h

(1)
q soft coll fin soft coll fin coll LL const coll fin coll fin

(59) (59) (59) (25) (46) (47) (48) (50) (51) (52) (54) (59) (58) (35) (36) (38) (39)

term by setting k′ = 0 (except in the 1/k′2 pole), and by
introducing an UV cutoff. Observing that the jet distri-
bution, because of (28d), reduces to S(2)

J (k; xz) one easily
obtains

dσ

dJ

coll
B = αs

CA

π

∫
dx

∫
dk h(0)

q (k)
∫ 1

0
dz V (0)

g (k, xz)

× f (0)
g (x)

[
1
ε

(
Λ2

µ2

)ε

P (z)
]

. (54)

The LL part can be extracted exactly with the same
procedure already followed in [1], thanks to the suppres-
sion of the partonic cross section when gluon 3 is emit-
ted at larger rapidity w.r.t. that of gluon 1. Infact, when
gluon 3 is in the central region, gluon 1 must be the jet. In
this case, the azimuthal average of the cross section w.r.t.
gluon 3 azimuthal angle φ3 at fixed gluon 1 momentum
yields〈

(1 − z)q · (q − zk)
q2(q − zk)2

〉
φ3

=
1
q2 Θ(E3 −z(E1 +E3)) . (55)

This relation is exact and clearly shows that, outside the
angular ordered region

E3

z
>

E1

1 − z
⇐⇒ θ3 > θ1 ⇐⇒ y3 < y1 , (56)

there is no contribution to the cross section. In practice,
by taking into account the variation of h

(0)
q (k) during the

averaging procedure, instead of a strictly vanishing con-
tribution we have a strong suppression. Note that, in the
limit q → 0 (which includes the soft region), the variation
of k′ goes to zero as well, so that (56) is really an accu-
rate statement in the “dangerous” part of the phase space.
Moreover, (55) shows that the 1/q2 kinematic dependence
of the LL kernel governs the differential cross section up
to the very end of the angular boundary.

Therefore, we define the LL contribution in the “lower
half region” y′

3 > 0 by

dσ

dJ

LL
B := αs

∫
dk h(0)

q (k)
∫

dk′ CA

π

1
πεq2 h(0)

g (k′)

×
∫ 1

zcut

dz

z
Θ(E3 − z(E1 + E3))

×
∫

dx S(2)
J (k′, x)f (0)

g (x)

=
∫

dx

∫
dk

∫
dk′ h(0)

q (k)K(0,real)(k, k′)

× log
√

xs

EJ + E3
V (0)

g (k′, x)f (0)
g (x) , (57)

having imposed the jet condition J = {1}.
The remaining part of the B term is finite in 4 dimen-

sions and constant in energy, so that we can set ε = 0 and
zcut = 0 to define the constant part

dσ

dJ

const
B :=

[
dσ

dJ
B − dσ

dJ

coll
B − dσ

dJ

LL
B

]
zcut = 0

ε = 0

. (58)

5 The NLO jet vertex: sum of real
and virtual corrections

Having completed the calculation of both the virtual and
real corrections in the whole phase space, we are going to
collect all partial results and to show that the complete
one-loop jet cross section can naturally be fitted to the
form of (12). Table 1 summarizes the decomposition of
the one-loop jet cross section and gives the references of
the various contributions.

In Sect. 3 we have presented the virtual contributions
to the jet cross section which, after renormalization of
the coupling, assume the form of (15). The contribution
coming from the Π̃q impact factor correction has been
combined with the “upper half region” real contribution
to give the full impact factor of the upper quark q (second
term of (25)).

The remaining virtual terms and the LL contributions
of both the negative (first term of (25)) and positive ((57))
rapidity regions can be conveniently rewritten in the form

dσ

dJ

(virt)
∣∣∣∣
ω(1)

+
dσ

dJ

(virt)
∣∣∣∣
Π̃g

+
dσ

dJ

(real)
∣∣∣∣
LL

=
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= αs

∫
dx

∫
dk dk′ h(0)

q (k)K(0)(k, k′)

× log
xs

s0(k, k′)
V (0)

g (k′, x)f (0)
g (x)

+ αs

[(
k2

µ2

)ε (
−CA

π

1
ε2 +

11CA − 2Nf

6π

1
ε

)

+
CA

π

(
5
12

π2 − 67
36

)
+

5
18

Nf

π
− b0 log

k2

µ2

]
×

∫
dx

∫
dk h(0)

q (k)V (0)
g (k, x)f (0)

g (x) , (59)

where the kernel K(0) is the full BFKL kernel and the
energy scale s0 in (59) has been chosen as

s0(k, k′) := (|k′| + |q|)(|k| + |q|) = (EJ + E3)(E2 + E3) .
(60)

Let us stress that the energy scale in (60) arises nat-
urally when one requires impact factors and PDFs to have
standard collinear properties and the remaining non-
leading-log term to be finite in both the physical ε → 0
and high-energy s → ∞ limits. Choosing a different scale
of the energy requires the introduction of additional NLL
operators, which has to be added as multiplicative correc-
tions to the Green’s function. If, for instance, we adopt
s0 = |k||k′|, then the Green’s function (10b) has to be
replaced by

G(xs,k, k′) = (1 + αsHL)
[
1 + αsK

(0) log
xs

|k||k′|
]

× (1 + αsHR) (61)

HL(k, k′) = −K(0)(k, k′) log
|k| + |q|

|k|
HR(k, k′) = HL(k′, k) . (62)

We now consider the sum of all ε-divergent contribu-
tions coming from both real and virtual corrections. All
double poles coming from (59), (46) and (50) cancel out.
The single poles come from (59), (35), (38), (47), (51),
(54). They combine to give exactly the DGLAP splitting
functions terms which define the PDF one-loop correc-
tions. One has only to note that

(1 − z)P (1 − z)
(1 − z)+

+P (z) =
z

(1 − z)+
+

1 − z

z
+z(1−z) (63)

and that the Pgg LO DGLAP splitting function is defined
by

Pgg(z) = 2CA

[
1 − z

z
+

z

(1 − z)+
+ z(1 − z)

]
+

(
11CA

6
− Nf

3

)
δ(1 − z) . (64)

The non-LL total singular contribution adds up to

dσ

dJ

singular
=

αs

2π

1
ε

(
Λ2

µ2

)ε ∫
dx

∫
dk h(0)

q (k)

×
{

V (0)
q (k, x)

[
2NfPqg ⊗ f (0)

g

]
(x)

+V (0)
g (k, x)

[
Pgg ⊗ f (0)

g

]
(x)

}
. (65)

The cutoff Λ introduced in all the collinear subtraction has
the physical interpretation of factorization scale and can
therefore be identified with µF . Equation (65) shows that
the only singular terms remaining after the sum of real
and virtual corrections are of collinear origin, and actually
amount to the expected collinear singularities stemming
from parton radiation out of incoming gluons. They can
be absorbed in the PDFs according to (13); of course only
the term b = g in the sum is reproduced.

Finally all the finite and not LL terms from (59), (35),
(36), (38), (39), (46), (50), (47), (51), (48), (52) and (58)
contribute to the jet vertex

dσ

dJ

finite
= αs

∫
dx

∫
dk h(0)

q (k)V (1)
g (k, x)f (0)

g (x) , (66)

which defines the NLO correction to the gluon-initiated
jet vertex

V (1)
g (k, x)

:=
[(

11
6

CA

π
− 1

3
Nf

π

)
log

k2

Λ2 +
π2

4
CA

π
+

13
36

Nf

π

−b0 log
k2

µ2

]
V (0)

g (k, x)

+
∫

dz V (0)
g (k, xz)

[Nf

π

CF

CA
z(1 − z)

+ 2
CA

π
(1 − z)P (1 − z)

(
log(1 − z)

1 − z

)
+

]
+

Nf

π

∫
dk′

π

∫ 1

0
dz Pqg(z)

[ h
(0)
q (k′)

q2 + k′2 S(3)
J

(
k′, q, xz; x

)
− 1

k′2 Θ(Λ2 − k′2)V (0)
q (k, xz)

]
+

Nf

2π

∫
dk′

π

∫ 1

0
dz Pqg(z)

NCA

(q − zk)2

×
[
z(1 − z)

q · k′

q2k′2 S(3)
J

(
k′, q, xz; x

)
− 1

k2 Θ
(
Λ2 − (q − zk)2

)S(2)
J (k, x)

]
+

CA

π

∫ 1

0

dz

(1 − z)+
[(1 − z)P (1 − z)]

×
∫

dl

πl2

{
NCA

l2 + (l − k)2

×
[
S(3)

J

(
zk + (1 − z)l, (1 − z)(k − l), x(1 − z); x

)
+ S(3)

J

(
k − (1 − z)l, (1 − z)l, x(1 − z); x

)]
− Θ(Λ2 − l2)

[
V (0)

g (k, x) + V (0)
g (k, xz)

]}

+
CA

π

∫
dk′

π

∫
dz

[
P (z)

(
(1 − z)

q · (q − zk)
q2(q − zk)2
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× h(0)
g (k′)S(3)

J (k′, q, xz; x) +

− 1
k′2 Θ(Λ2 − k′2)V (0)

g (k, xz)
)

− 1
zq2 Θ

(|q| − z(|q| + |k′|))V (0)
g (k′, x)

]
. (67)

Like for the quark case the gluon originated vertex clearly
depends on the jet definition and on three scales: the en-
ergy scale s0 (via the subtraction of the LL term ∝ 1/z),
the factorization scale Λ = µF and the renormalization
scale µ. Note that, both for the quark and for the gluon
initiated vertex, the µ-dependence appears only inside the
term b0 log k2/µ2 which multiplies the Born approxima-
tion. If we chose, for example, Λ2 = E2

J , then all the other
terms in (67) are scale invariant.

6 A consistency check:
jet vertex versus impact factor

In this section we compare the structures of the high en-
ergy factorization formulae in the two cases of jet cross
section – discussed in this paper and in [1] – and of in-
clusive partonic cross section – presented in [13,14]. This
is interesting both for understanding the different struc-
ture of the singularities involved in the two formulations
and, on the other hand, to underline the equivalence in
the LL subtraction procedure which will allow us to use
the results of two-loop calculations for the generalization
to higher orders presented in Sect. 7.

6.1 Jet cross section versus inclusive cross section

Let us consider the quark-hadron one-jet inclusive factor-
ization formula

dσ

dJ
qH =

∑
a

∫
dx dk dk′ hq(k)G(xs,k, k′)Va(k′, x)fa(x)

(68)
(cfr. (10a)) and compare it to the one describing the in-
clusive quark-parton cross section

dσincl
qa =

∫
dk dk′ hq(k)G(ŝ,k, k′)ha(k′) . (69)

Formally, one can obtain the former from the latter by
simply replacing the partonic impact factor of the lower
incoming parton a with the product of jet vertex and PDF
– we refer to this product as “jet impact factor”. There is
nevertheless an important difference between the one-loop
correction to the impact factor h(1) and the one to the “jet
impact factor” [V ∗ f ](1) = V (1) ∗ f (0) + V (0) ∗ f (1). In the
gluon-initiated process, the jet impact factor contains the
full collinear singularities (included in f (1)) relative to the
g → q and g → g splittings, as shown in (65). The gluon
impact factor, on the other hand, contains the full g → q
collinear singularity but only a part of the g → g one.
In fact, the residue of the 1/ε pole of the gluon impact

θ

θ1

3(1,   )

(0,   )k

0

1−z

z(  ,         )k−k’

k’

z −k’(  ,      )

(      ,     )

Fig. 5. LAB frame view of the quark + reggeon → quark
+ gluon blob involved in the quark-initiated jet cross section
(in particular the Feynman diagram responsible for the 1 ‖ a
collinear singularity yielding 1/ε×Pgq is shown). θ1 and θ3 de-
notes the outgoing quark and gluon polar angles respectively.
In parentheses close to each particles are the longitudinal mo-
mentum fraction (w.r.t. the incoming parton) and the trans-
verse momentum

factor correction h
(1)
g is

∫
dz [Pqg(z) + Pgg(z) − 2CA/z].

This is because the subtracted term 2CA/z has been taken
into account in the LL contribution (see (57)). The same
is true for quark-initiated processes, the residue of the
1/ε pole in the quark impact factor correction h

(1)
q being∫

dz [Pqq(z) + Pgq(z) − 2CF /z].
In the jet case, it has been possible to factorize the

full collinear singularities into the PDF because of the jet
distribution, which selects only some final states out of
the whole phase space.

How does this happen? Let us discuss this issue in
more detail for the simpler case of quark-initiated scatter-
ing. Figure 5 shows a possible configuration of the quark-
reggeon blob qg∗ → qg. In the inclusive cross section,
all configurations contribute to the cross section. When
θ3 < θ1, the contribution is entirely assigned to the impact
factor correction. However, when θ3 > θ1, according to an-
gular ordering, the part ∝ 2CF /z of the squared matrix
element is interpreted as LL term. Since the collinear re-
gion which should provide the Pgq splitting function times
the 1/ε pole is just θ1 � 0, it is clear that it is always
affected by the LL subtraction, and therefore the impact
factor correction contains only the “non singular” part
Pgq(z) − 2CF /z of the splitting function.

In the jet case, in the collinear region θ1 � 0, we per-
form no LL subtraction, because the gluon is constrained
to be the jet, hence the 1/ε collinear pole multiplies the
full Pgq splitting function (and the LO jet vertex). The LL
subtraction is performed when θ3 > θ1 and the jet con-
sists of only the quark. In this case there is no collinear
singularity associated with the LL subtraction.

6.2 Relation between h(1) and V (1)

One could think to check the consistency of our calcu-
lation by integrating the factorization formula of the jet
observables with respect to the jet variables in order to
recover the quark-hadron inclusive cross section

dσincl
qH =

∑
a

∫
dx dk dk′ hq(k)G(xs,k, k′)ha(k′)f (0)

a (x) ,

(70)
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obtained by convoluting the quark-parton inclusive cross
section (69) with the bare3 parton densities f

(0)
a (x).

This is not the case, because the single-jet configura-
tions would be counted twice. Consider, for instance, the
configuration of Fig. 5. It would be counted once when the
quark is the jet and a second time when the gluon is the
jet. On the contrary, if we replace the jet distribution S(3)

J

with another distribution S̃(3)
J with the property that∫

dJ S̃(3)
J (p1, p3, ξ; x) = 1 , dJ := dyJdEJdφJ ,

(71)
(i.e., a function that counts each final state once and only
once), and define a “modified jet vertex” Ṽ (1), obtained
from V (1) by replacing S(3)

J → S̃(3)
J , then the integration

over the jet variables of the “modified one-jet inclusive
cross section” yields the inclusive cross section (70), be-
cause ∫

dJ Ṽ ∗ f = h ∗ f (0) . (72)

More precisely:∫
dJ

{
Ṽ (1)

a (k, x; J) +
1

2πε

(
Λ2

µ2

)ε

×
∫

dz
[
V (0)

a (k, xz; J)Paq(z) + V (0)
a (k, xz; J)Pag(z)

]}
= h(1)

a (k) , (a = q, g) . (73)

Despite of the difference between the partonic and
jet impact factors, the remaining factors in the respec-
tive factorization formulae are the same. In particular,
the Green’s function at scale |k||k′| in the form of (61)
is identical to the one defined in [13] for the partonic case,
i.e., it shares the same impact kernel HL and HR.

This is due to the method adopted for the definition of
the partonic impact factor (resp., the jet vertex), i.e., for
the separation of the central region from the fragmenta-
tion region. In practice, whatever the selection of the final
state for the observable under study, the precise contri-
bution of the fragmentation region of each of the incom-
ing particles has been defined according to the following
scheme:

– take the expression of the squared matrix element
(supplied eventually with the distribution S provid-
ing the final state selection) valid when the gluon is in
the fragmentation region of the incoming particle;

– extract the central region limit from the above expres-
sion. It should be proportional to the BFKL kernel
times the LO impact factor times an enhancing factor
describing the large extension of the central region (in
our variables, this enhancing factor is 1/z), provided
the final state selection is inclusive in the central re-
gion. This is the case for the one- and two-jet inclusive
observables that we are studying;

3 One must use the bare PDFs because the collinear singu-
larities are embodied in the partonic impact factors

– at fixed quark momentum, subtract from the fragmen-
tation region expression the one obtained as central
region limit. This subtraction has to be performed ac-
cording to the angular ordering prescription θ3 > θ1
⇐⇒ y3 > y1 in the soft gluon region.

This defines on one side the impact factors, and on the
other side what is not impact factor, i.e., what contributes
to the Green’s function. The universality of the Green’s
function (at least at one-loop) should now become clearer:
it is due to the same scheme of defining the LL subtraction,
yielding in all cases the BFKL kernel times the LO impact
factor. The details of the angular ordering out of the soft
gluon region and the choice of the energy scale determines
the form of the impact kernel HL,R.

7 Factorization formula at higher orders

In this section we discuss some issues related to the gener-
alization of the factorization formula (10) to higher order
perturbation theory.

It was the main purpose of this paper (and of the pre-
vious one [1]) to provide a factorization formula for the jet
production cross section at high energies, accurate in the
next-to-leading log s approximation. To this end we have
studied the jet cross section formula in next-to-leading or-
der, O(α3

s ). The leading logarithmic approximation (LL)
retains the coefficient of ln s. What we have computed in
this paper is the next-to-leading logarithmic approxima-
tion (NLL), i.e. the terms without the ln s enhancement.
The generalization to higher order in αs therefore con-
tains, in LL, terms of the form αn

s (ln s)n−2, and in NLL
contributions of the form αn

s (ln s)n−3. We are interested
in summing both the LL and NLL terms to all orders αs.

In generalizing our result to all orders we have to rely
on Regge factorization properties of scattering amplitudes
in the high energy limit. Regge theory states that ampli-
tudes (both for elastic scattering, and also for the inelastic
production of particles in the multiregge limit, when de-
scribed by the exchange of Regge poles) obey factorization
properties. In QCD the gluon has been found to reggeize,
and, as it is discussed in some detail in the original BFKL
papers [4] and in the NLO calculations of the BFKL kernel
[8,9], scattering amplitudes with color octet exchange are
expected to satisfy these factorization properties. In QCD
calculations, this leads to the ‘Regge ansatz’ for elastic
parton-parton scattering and for inelastic gluon produc-
tion in the the multiregge limit. Strictly speaking, this
ansatz is a hypothesis, suggested by Regge theory and by
the observation that the gluon reggeizes. The strongest
support for the correctness of the assumption comes from
the result that the LL BFKL equation, derived from the
Regge ansatz, in the color octet channel satisfies the boot-
strap condition. More recently, the Regge ansatz has been
used also in NLO calculations [8–10]; the bootstrap con-
dition in the NLO BFKL equation was first formulated
in its weak form inside elastic scattering amplitudes and
after in its strong form, which is the one necessary for the
self-consistency of the assumption of Reggeized form of
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the production amplitudes [17,18]. Very recently the va-
lidity of the bootstrap condition (strong form) in the NLO
BFKL equation has been proven in [19].

In our case, we have used the Regge ansatz for the
factorizing form in (10): in the jet production amplitude
the large rapidity gap between the outgoing quark (at
the upper end) and the jet (at the bottom) leads to the
exchange of a reggeized gluon, and the upper and lower
vertex become independent from each other. In the cross
section formula (10) this factorization property leads to
the impact factor and the jet vertex. In our calculation,
it has been one of our tasks to show that the jet vertex
fits into this factorization scheme: when integrated over
the jet variables, the square of the “modified jet vertex”
turns into the gluon (or quark) impact factor which has
been studied before. Without the integration over the jet
variables we have, in principle, a new situation: we find
that Regge factorization still works at the NLO level. One
expects that this factorization continues to hold also in
higher order αs, i.e. the impact factor at the upper end of
the gluon and the jet vertex allow for a systematic expan-
sion in powers of αs. Similarly, the exchanged gluon which
in lowest order is elementary turns into a reggeized gluon
with a trajectory function being given as a power series in
αs.

When generalizing to higher orders, i.e. to the produc-
tion of more gluons, we follow the strategy pursued in the
NLO calculations of the BFKL kernel: the Regge ansatz
for multi-gluon production amplitudes states that vertices
that are separated by large rapidity gaps are independent
of each other, i.e. they factorize. Before turning to the all-
order formula, it may be instructive to take a closer look
into the next order correction to the cross section formula,
the two-loop jet cross section O(α4

s ).
Since final states may consist of four, three, or two par-

tons we have terms of order α4
s log2 s and α4

s log s (terms
without ln s belong to NNLL and will not be considered).
Regge factorization leads us to expect:

1
α4

s

dσ

dJ

(2)
=

1
2

log2 xs

sR
h(0)K(0)K(0)V (0)f (0)

+ log
xs

sR

[
h(1)K(0)V (0)f (0)

+ h(0)(HLK(0) + K(0)HR + K(1))V (0)f (0)

+ h(0)K(0)V (1)f (0) + h(0)K(0)V (0)f (1)
]

.

(74)

The first term on the RHS is the LL term given by the
iteration of the leading kernel K(0). The square brackets
collect the NLL contributions: the impact factor correc-
tion, the contribution from the products of impact kernel
and leading kernel, the NLL kernel, and finally the correc-
tions to the jet vertex and to the PDF.

In the second step we relate the terms of (74) to the
various final states and kinematic regions contributing
to the O(α4

s ) cross section. We have three kinds of final
states: two-parton final states (with two-loop virtual cor-
rections), three-parton final states (with one-loop virtual

corrections) and four-parton final states at tree level. Be-
cause of the reggeization of the gluon, there is no one-to-
one correspondence between the number of rapidity gaps
and the power of ln s. Let us go through the final states
in some detail.

Consider first the four-parton final state of Fig. 6c. It
can be shown that, when the two central gluons are emit-
ted at large subenergies sij � tj , i.e., final state particles
are separated by large rapidity gaps, the cross section is
described by the iteration of two BFKL kernels (actually
their real parts), one for each emitted gluon. Since the
external partons are isolated in rapidity space, they are
described by LO partonic impact factors in the inclusive
process, and by the LO jet vertices in the jet process.

NLL contributions arise from quasi-multi-regge kine-
matics, where one (and only one) pair of particles is emit-
ted at small subenergy (small rapidity gap). If the pair
with small subenergy is formed by the two central gluons
3 and 4, there is no ambiguity to associate the correspond-
ing contribution to the NLL BFKL kernel K(1). This is one
of the so called “irreducible contribution” of [9], because
it can directly be interpreted as contribution to K(1), re-
gardless of the definition of the impact factors. Note that
the rapidity intervals y1 − y3 and y4 − y2 must be large in
order to ensure the contribution to be NLL. Therefore the
external particles 1 and 2 are still described by LO impact
factors or jet vertices.

When one of the central gluon approaches an external
particle, say gluon 3 enters the fragmentation region of
particle 1, s13 and y1 − y3 become small. In this case we
have the contribution to the jet vertex and PDF correc-
tions. The definition given in the one-loop situation still
works here, always because of high energy factorization:
since s34 and s42 are much larger than s13, the emission
of gluon 4 is described by the real part of the LL BFKL
kernel, independently of what is going on in the upper
or lower vertices. Therefore, we can apply the machinery
of the one-loop calculation factoring out the b → 2 + 4
subprocess (described by h(0)K

(0)
real, and consider only the

blob a+g∗(k) → 1+3 as done before. What one obtains –
after the subtraction of the central region contribution of
gluon 3 according to the angular ordering prescription –
is the sum of the one-loop (real) corrections to the vertex
and to the PDF, the impact kernel HR, and a residual
contribution that can only be assigned to the NLL kernel
K(1). This is one of the so called “reducible” contribution,
in that it depends on the definition of the “(jet) impact
factors”. The key point is that also the reducible contri-
butions to K(1) are the same as those obtained in the
inclusive case, because they are related (just like HR) to
the subtraction of the central region from the fragmen-
tation region, and we have shown in Sect. 6 that the LL
subtraction is defined exactly in the same way in the jet
cross section as well as in the inclusive cross section.

The treatment of the phase space region where gluon
4 is close to parton 2 is equivalent to that adopted in the
inclusive process and provides the upper impact factor
correction h(1), the other impact kernel HL and another
reducible contribution to K(1).
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Fig. 6a–c. Schematics of amplitude di-
agrams involved in the calculation of
the partonic cross section at relative
O(α2

s ): a two particle final state with
two-loop virtual corrections; b three
particle final state with one-loop vir-
tual corrections; c four particle final
state at tree level. The final state parti-
cles are ordered with increasing rapid-
ity from the top to the bottom

A similar analysis can be performed for the three par-
ton final state emission, Fig. 6b. When the gluon is in the
central region, one has the product of the real part K

(0)
real

of the kernel (gluon emission) and of the virtual part
K

(0)
virt (provided by the leading virtual corrections), but

also virtual corrections to the partonic or jet impact fac-
tors (given by virtual corrections attaching only to the cor-
responding partonic line) and an irreducible contribution
to K(1) (given by virtual corrections attaching to the out-
going central gluon and to the exchanged gluons). When
the emitted gluon approaches the lower partonic line, the
contribution to the cross section can be at most NLL, and
this occurs only if there are virtual corrections “filling”
the large rapidity gap y3 − y2 providing a factorized one-
loop gluon trajectory (virtual part of the BFKL kernel).
Therefore, also in this case we can factor out the upper
blob b → 2 (described by h(0)K

(0)
virt and apply the proce-

dure of separation of central region and fragmentation re-
gion to the lower blob a+g∗(k) → 1+3 as done before. We
obtain again – after the subtraction of the central region
contribution of gluon 3 according to the angular ordering
prescription – the sum of the one-loop (real) corrections
to the vertex and to the PDF, the impact kernel HR, and
another reducible contribution to K(1).

The emitted gluon approaching the upper partonic line
is treated in the same way of the inclusive case, giving
again a correction to the upper partonic impact factor, the
composition of the impact kernel HL with the virtual part
of the BFKL kernel and yet another reducible contribution
to K(1).

The two-parton final state contribution (see Fig. 6a) is
the simplest to analyze, since the jet has a trivial struc-
ture, namely it consists only of the lower outgoing quark,
and is described by the LO jet vertex V (0) ∝ h(0). The
comparison with the partonic case is therefore straight-
forward and we obtain: the iteration of two gluon trajec-
tories ω(1) (to be included in K(0)K(0)), the product of
the virtual correction to the impact factor and the gluon
trajectory (to be included in h(1)K(0)), the product of the
trajectory and the virtual corrections to the lower quark-
reggeon vertex (to be included in K(0)V (1) and K(0)f (1))
and the two-loop gluon trajectory ω(2) (the last irreducible
contribution to K(1)).

From (74) and from the subsequent discussion one sees
that the quantity governing the high energy behaviour of
the higher order processes at NLL level is the BFKL kernel

K, which has the perturbative expansion

K = αsK
(0) + α2

sK
(1) . (75)

Its NLL term K(1) has been determined for inclusive par-
tonic scattering. In a perturbative expansion of the cross
section, the NLL kernel K(1) enters the first time at rela-
tive order α2

s , i.e., at two-loop.
The most straightforward way of generalizing to all

orders in αs is to adapt the strategy used in the NLO
study of parton parton scattering to our case of one-jet-
inclusive processes. The main difference between the two
cases is that in the latter the impact factor of the lower
incoming parton is replaced by the convolution of the PDF
with the jet vertex, as was already shown in the one-loop
calculation. Therefore, we keep the general structure given
in (10a), together with the perturbative expansions (11) of
the energy independent factors. Only the Green’s function
G needs to be extended to NLL level.

Before we write down the general all-order formula, let
us return, once more, to the question of the energy scale
s0. For future applications it will be convenient to use
the symmetric Regge-type energy scale sR := |k1||k2|. As
we have discussed before, our requirement of giving the
impact factor and the PDF’s the correct collinear proper-
ties has led to the energy scale (60), and a change of the
energy scale will be induced by the additional operators
(1 + αsHR), (1 + αsHL). As discussed in [13], this leads
to the following form of the NLO BFKL Green’s function
for the energy scale sR := |k1||k2|:

G(xs,k1, k2) =
∫

dω

2πi

(
xs

sR

)ω

× 〈k1|(1 + αsHL)[ω − K]−1(1 + αsHR)|k2〉 . (76)

in terms of the impact kernels (62) and of the BFKL ker-
nel (75). Inserting this Green’s function into (10a) and
expanding in powers of αs one readily reproduces (74).

We conclude with a final formula for the Mueller-Na-
velet jets:

d2σ

dJ1dJ2
=

∑
a,b

∫
dx1dx2

∫
dk1dk2 fa(x1)Va(k1, x1)

G(x1x2s,k1, k2)Vb(k2, x2)fb(x2) (77)

where a, b = q, g, and the subscripts 1 and 2 refer to jet 1
and 2 in hadron 1 and 2, resp. All elements are known in
LO and in NLO; in particular, the jet vertex expressions
V

(1)
g from (67), and V

(1)
q from (105) of [1].
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8 Concluding remarks

In this paper we have completed the analytic part of the
NLO corrections of the jet vertex which appears in the
cross section formulae for Mueller-Navelet jets at hadron
hadron colliders and for forward jets in deep inelastic elec-
tron proton scattering. The final result of our study is
summarized in (77), the analytic expression of the cross
section for the production of Mueller-Navelet jets at the
Tevatron or at the LHC.

Apart from the interest in performing a consistent
NLO analysis of the BFKL Pomeron at hadron hadron col-
liders or in deep inelastic ep scattering, the results of our
analysis may raise some theoretical interest. Due to the
very special kinematics of the jet production processes, the
jet vertex lies at the interface between two different high
energy limits, the hard scattering regime and the Regge
limit (small-x limit): a priori it was not clear whether,
at NLO accuracy, it would be possible to separate the
collinear divergences from the BFKL-type gluon produc-
tion. We have obtained an affirmative answer. Previous
experience with partonic impact factors has served as a
valuable guide in performing this separation inside the jet
vertex.

What remains is the numerical evaluation of the cross
section formulae, using the results derived in this paper.
As the first step, one has to specify the jet functions S

(i)
J ,

i.e. we have to decide on a jet algorithm. In addition, ex-
perimental cuts have to be formulated. We hope to be able
to report first numerical results in the near future.
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